The power of qutrits for non-adaptive measurement-based quantum computing

Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2023-07, Vol.25 (7), p.73007
Hauptverfasser: Mackeprang, Jelena, Bhatti, Daniel, Hoban, Matty J, Barz, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most 2 n − 1 qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all three-valued logic functions using the generalised qutrit Greenberger–Horne–Zeilinger (GHZ) state as a resource and at most 3 n − 1 qutrits. This yields a corresponding generalised GHZ type paradox for any three-valued logic function that LHVs cannot compute. We give an example for an n -variate function that can be computed with only n  + 1 qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/acdf77