Nonlinear saturation and oscillations of collisionless zonal flows

In homogeneous drift-wave turbulence, zonal flows (ZFs) can be generated via a modulational instability (MI) that either saturates monotonically or leads to oscillations of the ZF energy at the nonlinear stage. This dynamics is often attributed as the predator-prey oscillations induced by ZF collisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2019-06, Vol.21 (6), p.63009
Hauptverfasser: Zhu, Hongxuan, Zhou, Yao, Dodin, I Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In homogeneous drift-wave turbulence, zonal flows (ZFs) can be generated via a modulational instability (MI) that either saturates monotonically or leads to oscillations of the ZF energy at the nonlinear stage. This dynamics is often attributed as the predator-prey oscillations induced by ZF collisional damping; however, similar dynamics is also observed in collisionless ZFs, in which case a different mechanism must be involved. Here, we propose a semi-analytic theory that explains the transition between the oscillations and saturation of collisionless ZFs within the quasilinear Hasegawa-Mima model. By analyzing phase-space trajectories of DW quanta (driftons) within the geometrical-optics (GO) approximation, we argue that the parameter that controls this transition is N ∼ γMI/ DW, where γMI is the MI growth rate and DW is the linear DW frequency. We argue that at N < 1, ZFs oscillate due to the presence of so-called passing drifton trajectories, and we derive an approximate formula for the ZF amplitude as a function of time in this regime. We also show that at N 1, the passing trajectories vanish and ZFs saturate monotonically, which can be attributed to phase mixing of higher-order sidebands. A modification of N that accounts for effects beyond the GO limit is also proposed. These analytic results are tested against both quasilinear and fully-nonlinear simulations. They also explain the earlier numerical results by Connaughton et al (2010 J. Fluid Mech. 654 207) and Gallagher et al (2012 Phys. Plasmas 19 122115) and offer a different perspective on what the control parameter actually is that determines the transition from the oscillations to saturation of collisionless ZFs.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ab2251