Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas
We explore the quench dynamics of a binary Bose-Einstein condensate crossing the miscibility-immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, inv...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2018-04, Vol.20 (4), p.43052 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the quench dynamics of a binary Bose-Einstein condensate crossing the miscibility-immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body (MB) approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark-antidark solitary waves are spontaneously generated and subsequently found to decay in the MB scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/aabc6a |