Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors

Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2019-10, Vol.32 (11)
Hauptverfasser: Banno, Nobuya, Morita, Taro, Yu, Zhou, Yagai, Tsuyoshi, Tachikawa, Kyoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Superconductor science & technology
container_volume 32
creator Banno, Nobuya
Morita, Taro
Yu, Zhou
Yagai, Tsuyoshi
Tachikawa, Kyoji
description Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.
doi_str_mv 10.1088/1361-6668/ab4632
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6668_ab4632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab4632</sourcerecordid><originalsourceid>FETCH-LOGICAL-i292t-11a0e4c02582616e348ee9a7ce172a68fb7c61767e029ef5398d67fba03232693</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKt3j7kKrs0ku0n2KKV-QNGD9eIlZPNRU0qyNNn_311WPAkPZnjzGB4_hG6BPACRcgWMQ8U5lyvd1ZzRM7T4s87RgrQNqyip5SW6yvlACIBkdIH2G--dKTh5_BWxtjaUkMYlWrwL2KY-xD3uU57tUeXbYRu8H_JknJw288XjEIs7RX3EJUT81rGPiE2KdjAlnfI1uvD6mN3N71yiz6fNbv1Sbd-fX9eP2yrQlpYKQBNXG0IbSTlwx2rpXKuFcSCo5tJ3wnAQXDhCW-cb1krLhe80YZRR3rIlupv_htSrQxqmQlnlIRfFqAIY1RAQqrd-zN7_kwWiJqBqoqcmemoGyn4AJGFoJw</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</creator><creatorcontrib>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</creatorcontrib><description>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab4632</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atom probe tomography ; brass matrix ; growth kinetics ; Ti doping ; void</subject><ispartof>Superconductor science &amp; technology, 2019-10, Vol.32 (11)</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9895-3325 ; 0000-0002-7141-541X ; 0000-0003-1842-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab4632/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Banno, Nobuya</creatorcontrib><creatorcontrib>Morita, Taro</creatorcontrib><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Tachikawa, Kyoji</creatorcontrib><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</description><subject>atom probe tomography</subject><subject>brass matrix</subject><subject>growth kinetics</subject><subject>Ti doping</subject><subject>void</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM1LAzEQxYMoWKt3j7kKrs0ku0n2KKV-QNGD9eIlZPNRU0qyNNn_311WPAkPZnjzGB4_hG6BPACRcgWMQ8U5lyvd1ZzRM7T4s87RgrQNqyip5SW6yvlACIBkdIH2G--dKTh5_BWxtjaUkMYlWrwL2KY-xD3uU57tUeXbYRu8H_JknJw288XjEIs7RX3EJUT81rGPiE2KdjAlnfI1uvD6mN3N71yiz6fNbv1Sbd-fX9eP2yrQlpYKQBNXG0IbSTlwx2rpXKuFcSCo5tJ3wnAQXDhCW-cb1krLhe80YZRR3rIlupv_htSrQxqmQlnlIRfFqAIY1RAQqrd-zN7_kwWiJqBqoqcmemoGyn4AJGFoJw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Banno, Nobuya</creator><creator>Morita, Taro</creator><creator>Yu, Zhou</creator><creator>Yagai, Tsuyoshi</creator><creator>Tachikawa, Kyoji</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0001-9895-3325</orcidid><orcidid>https://orcid.org/0000-0002-7141-541X</orcidid><orcidid>https://orcid.org/0000-0003-1842-7881</orcidid></search><sort><creationdate>20191015</creationdate><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><author>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i292t-11a0e4c02582616e348ee9a7ce172a68fb7c61767e029ef5398d67fba03232693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atom probe tomography</topic><topic>brass matrix</topic><topic>growth kinetics</topic><topic>Ti doping</topic><topic>void</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banno, Nobuya</creatorcontrib><creatorcontrib>Morita, Taro</creatorcontrib><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Tachikawa, Kyoji</creatorcontrib><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banno, Nobuya</au><au>Morita, Taro</au><au>Yu, Zhou</au><au>Yagai, Tsuyoshi</au><au>Tachikawa, Kyoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab4632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9895-3325</orcidid><orcidid>https://orcid.org/0000-0002-7141-541X</orcidid><orcidid>https://orcid.org/0000-0003-1842-7881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2019-10, Vol.32 (11)
issn 0953-2048
1361-6668
language eng
recordid cdi_iop_journals_10_1088_1361_6668_ab4632
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atom probe tomography
brass matrix
growth kinetics
Ti doping
void
title Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Zn%20addition%20and%20Ti%20doping%20position%20on%20the%20diffusion%20reaction%20of%20internal%20tin%20Nb3Sn%20conductors&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Banno,%20Nobuya&rft.date=2019-10-15&rft.volume=32&rft.issue=11&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab4632&rft_dat=%3Ciop%3Esustab4632%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true