Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors
Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outwa...
Gespeichert in:
Veröffentlicht in: | Superconductor science & technology 2019-10, Vol.32 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Superconductor science & technology |
container_volume | 32 |
creator | Banno, Nobuya Morita, Taro Yu, Zhou Yagai, Tsuyoshi Tachikawa, Kyoji |
description | Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn. |
doi_str_mv | 10.1088/1361-6668/ab4632 |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6668_ab4632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab4632</sourcerecordid><originalsourceid>FETCH-LOGICAL-i292t-11a0e4c02582616e348ee9a7ce172a68fb7c61767e029ef5398d67fba03232693</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKt3j7kKrs0ku0n2KKV-QNGD9eIlZPNRU0qyNNn_311WPAkPZnjzGB4_hG6BPACRcgWMQ8U5lyvd1ZzRM7T4s87RgrQNqyip5SW6yvlACIBkdIH2G--dKTh5_BWxtjaUkMYlWrwL2KY-xD3uU57tUeXbYRu8H_JknJw288XjEIs7RX3EJUT81rGPiE2KdjAlnfI1uvD6mN3N71yiz6fNbv1Sbd-fX9eP2yrQlpYKQBNXG0IbSTlwx2rpXKuFcSCo5tJ3wnAQXDhCW-cb1krLhe80YZRR3rIlupv_htSrQxqmQlnlIRfFqAIY1RAQqrd-zN7_kwWiJqBqoqcmemoGyn4AJGFoJw</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</creator><creatorcontrib>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</creatorcontrib><description>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab4632</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atom probe tomography ; brass matrix ; growth kinetics ; Ti doping ; void</subject><ispartof>Superconductor science & technology, 2019-10, Vol.32 (11)</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9895-3325 ; 0000-0002-7141-541X ; 0000-0003-1842-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab4632/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Banno, Nobuya</creatorcontrib><creatorcontrib>Morita, Taro</creatorcontrib><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Tachikawa, Kyoji</creatorcontrib><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</description><subject>atom probe tomography</subject><subject>brass matrix</subject><subject>growth kinetics</subject><subject>Ti doping</subject><subject>void</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM1LAzEQxYMoWKt3j7kKrs0ku0n2KKV-QNGD9eIlZPNRU0qyNNn_311WPAkPZnjzGB4_hG6BPACRcgWMQ8U5lyvd1ZzRM7T4s87RgrQNqyip5SW6yvlACIBkdIH2G--dKTh5_BWxtjaUkMYlWrwL2KY-xD3uU57tUeXbYRu8H_JknJw288XjEIs7RX3EJUT81rGPiE2KdjAlnfI1uvD6mN3N71yiz6fNbv1Sbd-fX9eP2yrQlpYKQBNXG0IbSTlwx2rpXKuFcSCo5tJ3wnAQXDhCW-cb1krLhe80YZRR3rIlupv_htSrQxqmQlnlIRfFqAIY1RAQqrd-zN7_kwWiJqBqoqcmemoGyn4AJGFoJw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Banno, Nobuya</creator><creator>Morita, Taro</creator><creator>Yu, Zhou</creator><creator>Yagai, Tsuyoshi</creator><creator>Tachikawa, Kyoji</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0001-9895-3325</orcidid><orcidid>https://orcid.org/0000-0002-7141-541X</orcidid><orcidid>https://orcid.org/0000-0003-1842-7881</orcidid></search><sort><creationdate>20191015</creationdate><title>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</title><author>Banno, Nobuya ; Morita, Taro ; Yu, Zhou ; Yagai, Tsuyoshi ; Tachikawa, Kyoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i292t-11a0e4c02582616e348ee9a7ce172a68fb7c61767e029ef5398d67fba03232693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atom probe tomography</topic><topic>brass matrix</topic><topic>growth kinetics</topic><topic>Ti doping</topic><topic>void</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banno, Nobuya</creatorcontrib><creatorcontrib>Morita, Taro</creatorcontrib><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Tachikawa, Kyoji</creatorcontrib><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banno, Nobuya</au><au>Morita, Taro</au><au>Yu, Zhou</au><au>Yagai, Tsuyoshi</au><au>Tachikawa, Kyoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Addition of Zn to a Cu matrix during Cu-Zn/Sn interdiffusion reactions at 400 °C leads to the formation of a solid ternary Cu-Zn-Sn phase, β-CuZn, at the outermost reaction layer next to the porous phase. The use of a brass matrix considerably suppresses void formation and promotes homogeneous outward Sn diffusion in pre-annealing, prior to Nb3Sn formation. There are exactly three paths for Ti doping in the internal tin process, i.e. doping to Sn cores, Nb filaments, and Cu matrix. Ti doping to Sn cores causes a Ti-rich layer formation at the boundary of the Nb filament pack; however, no Ti-rich layers are formed as a result of small Ti doping to the matrix and to Nb filaments. The absence of Ti-rich layers is believed to contribute to a smooth Sn diffusion and suppression of void growth. Atom probe tomography measurements reveal that Ti doping to Sn cores leads to a more inhomogeneous Ti distribution near the grain boundary and a larger variation of the grain boundary thickness than doping to Nb filaments, which may contribute to a better Sn grain boundary diffusion. It is concluded that Ti doping to the matrix, instead of doping to Sn cores, might be more effective in maintaining better growth kinetics of Nb3Sn.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab4632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9895-3325</orcidid><orcidid>https://orcid.org/0000-0002-7141-541X</orcidid><orcidid>https://orcid.org/0000-0003-1842-7881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2019-10, Vol.32 (11) |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6668_ab4632 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | atom probe tomography brass matrix growth kinetics Ti doping void |
title | Effect of Zn addition and Ti doping position on the diffusion reaction of internal tin Nb3Sn conductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Zn%20addition%20and%20Ti%20doping%20position%20on%20the%20diffusion%20reaction%20of%20internal%20tin%20Nb3Sn%20conductors&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Banno,%20Nobuya&rft.date=2019-10-15&rft.volume=32&rft.issue=11&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab4632&rft_dat=%3Ciop%3Esustab4632%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |