Transport characteristic evaluation of runaway electrons in an ITER disruption simulation

In previous studies, it has been observed that the transport of energetic electrons decreases with increasing energy. This observation is a global and long-time-scale result, attributed to the space-averaged perturbations. In this work, we focus on the local and instantaneous transport characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics and controlled fusion 2024-08, Vol.66 (8), p.85016
Hauptverfasser: Liu, Shi-Jie, Wang, Feng, Hu, Di, Wang, Zheng-Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In previous studies, it has been observed that the transport of energetic electrons decreases with increasing energy. This observation is a global and long-time-scale result, attributed to the space-averaged perturbations. In this work, we focus on the local and instantaneous transport characteristics of runaway electrons (REs) during the phase of tokamak disruption, with REs speeds close to the speed of light. To simulate the dynamics of REs, we utilize a particle tracing code called PTC. By coupling PTC with the MHD code JOREK, we are able to study the energy and spatial dependence of RE transport. Our investigations reveal that the finite orbit width (FOW) effect plays an important role in RE transport. This effect is influenced by the relative direction of the electron drift and the magnetic field line. Specifically, the FOW effect strengthens the transport when the drift direction aligns with the deflecting direction of the field line. And we compare the transport profiles among three time slices: at the beginning of the thermal quench, during the thermal quench, and at the beginning of the current quench. In this ITER disruption simulation, the perturbation scale is strong and δ B / B is up to 0.05 at developed thermal quench stage. It is reasonable that the influence of FOW effect on transport is less than that of magnetic perturbation even if the energy of REs is about hundreds MeV and the orbit width is equal to or greater than the perturbation length. These analyses provide insights into the mechanisms of RE transport based on magnetic perturbations.
ISSN:0741-3335
1361-6587
DOI:10.1088/1361-6587/ad5c9a