Transformer for low concentration image denoising in magnetic particle imaging

Magnetic particle imaging (MPI) is an emerging tracer-based imaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-08, Vol.69 (17)
Hauptverfasser: Liu, Yuanduo, Zhang, Liwen, Wei, Zechen, Wang, Tan, Yang, Xin, Tian, Jie, Hui, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic particle imaging (MPI) is an emerging tracer-based imaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images. Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data. Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67 g ml . Our method provides great potential for obtaining high quality MPI images at low concentrations.
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/ad6ede