Pulsed low dose-rate radiotherapy: radiobiology and dosimetry
Pulsed low dose-rate radiotherapy (PLDR) relies on two radiobiological findings, the hyper-radiosensitivity of tumor cells at small doses and the reduced normal tissue toxicity at low dose rates. This is achieved by delivering the daily radiation dose of 2 Gy in 10 sub-fractions (pulses) with a 3 mi...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2022-01, Vol.67 (3), p.3 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulsed low dose-rate radiotherapy (PLDR) relies on two radiobiological findings, the hyper-radiosensitivity of tumor cells at small doses and the reduced normal tissue toxicity at low dose rates. This is achieved by delivering the daily radiation dose of 2 Gy in 10 sub-fractions (pulses) with a 3 min time interval, resulting in an effective low dose rate of 0.067 Gy min
.
cell studies and
animal experiments demonstrated the therapeutic potential of PLDR treatments and provided useful preclinical data. Various treatment optimization strategies and delivery techniques have been developed for PLDR on existing linear accelerators. Preliminary results from early clinical studies have shown favorable outcomes for various treatment sites especially for recurrent cancers. This paper reviews the experimental findings of PLDR and dosimetric requirements for PLDR treatment planning and delivery, and summarizes major clinical studies on PLDR cancer treatments. |
---|---|
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/1361-6560/ac4c2f |