The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region
Clinical trials have shown that hyperthermia is a potent adjuvant to conventional cancer treatments, but the temperatures currently achieved in the clinic are still suboptimal. Hyperthermia treatment planning simulations have potential to improve the heating profile of phased-array applicators. An i...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2018-12, Vol.64 (1), p.15013-015013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clinical trials have shown that hyperthermia is a potent adjuvant to conventional cancer treatments, but the temperatures currently achieved in the clinic are still suboptimal. Hyperthermia treatment planning simulations have potential to improve the heating profile of phased-array applicators. An important open challenge is the development of an effective optimization procedure that enables uniform heating of the target region while keeping temperature below a threshold in healthy tissues. In this work, we analyzed the effectiveness and efficiency of a recently proposed optimization approach, i.e. focusing via constrained power optimization (FOCO), using 3D simulations of twelve clinical patient specific models. FOCO performance was compared against a clinically used particle swarm based optimization approach. Evaluation metrics were target coverage at the 25% iso-SAR level, target hotspot quotient, median target temperature (T50) and computational requirements. Our results show that, on average, constrained power focusing performs slightly better than the clinical benchmark (T50 °C), but outperforms this clinical benchmark for large target volumes (40 cm, T50 °C). In addition, the results are achieved in a shorter time (%) and are repeatable because the approach is formulated as a convex optimization problem. |
---|---|
ISSN: | 0031-9155 1361-6560 1361-6560 |
DOI: | 10.1088/1361-6560/aaf0c4 |