Integrable flows on null curves in the Anti-de Sitter 3-space

We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2024-11, Vol.37 (11), p.115015
Hauptverfasser: Musso, Emilio, Pámpano, Álvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115015
container_title Nonlinearity
container_volume 37
creator Musso, Emilio
Pámpano, Álvaro
description We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.
doi_str_mv 10.1088/1361-6544/ad7d58
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ad7d58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad7d58</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-c74e9bbc84aa441f52a3b43926358366bd014914d6cd59958132a49cb9ab0a703</originalsourceid><addsrcrecordid>eNp1j01LxDAYhIMoWFfvHvMDjJu3-Why8LAsui4seFDPIUlT7VLbkmQV_71bKt48DQwzwzwIXQO9BarUEpgEIgXnS1tXtVAnqPizTlFBtQBSVSDO0UVKe0oBVMkKdLftc3iL1nUBN93wlfDQ4_7Qddgf4mdIuO1xfg941eeW1AE_tzmHiBlJo_XhEp01tkvh6lcX6PXh_mX9SHZPm-16tSMeJMvEVzxo57zi1nIOjSgtc5zpUjKhmJSupsA18Fr6WmgtFLDScu2dto7airIFovOuj0NKMTRmjO2Hjd8GqJnwzcRqJlYz4x8rN3OlHUazHw6xPx78P_4Du8taDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrable flows on null curves in the Anti-de Sitter 3-space</title><source>Institute of Physics Journals</source><creator>Musso, Emilio ; Pámpano, Álvaro</creator><creatorcontrib>Musso, Emilio ; Pámpano, Álvaro</creatorcontrib><description>We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad7d58</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>33E05 ; 33E10 ; 37K10 ; 53B30 ; Anti-de Sitter space ; integrable flows ; KdV equation ; Lamé equation ; null curves ; special functions</subject><ispartof>Nonlinearity, 2024-11, Vol.37 (11), p.115015</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd and the London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-c74e9bbc84aa441f52a3b43926358366bd014914d6cd59958132a49cb9ab0a703</cites><orcidid>0000-0002-0899-819X ; 0000-0003-2239-2247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad7d58/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Musso, Emilio</creatorcontrib><creatorcontrib>Pámpano, Álvaro</creatorcontrib><title>Integrable flows on null curves in the Anti-de Sitter 3-space</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.</description><subject>33E05</subject><subject>33E10</subject><subject>37K10</subject><subject>53B30</subject><subject>Anti-de Sitter space</subject><subject>integrable flows</subject><subject>KdV equation</subject><subject>Lamé equation</subject><subject>null curves</subject><subject>special functions</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j01LxDAYhIMoWFfvHvMDjJu3-Why8LAsui4seFDPIUlT7VLbkmQV_71bKt48DQwzwzwIXQO9BarUEpgEIgXnS1tXtVAnqPizTlFBtQBSVSDO0UVKe0oBVMkKdLftc3iL1nUBN93wlfDQ4_7Qddgf4mdIuO1xfg941eeW1AE_tzmHiBlJo_XhEp01tkvh6lcX6PXh_mX9SHZPm-16tSMeJMvEVzxo57zi1nIOjSgtc5zpUjKhmJSupsA18Fr6WmgtFLDScu2dto7airIFovOuj0NKMTRmjO2Hjd8GqJnwzcRqJlYz4x8rN3OlHUazHw6xPx78P_4Du8taDw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Musso, Emilio</creator><creator>Pámpano, Álvaro</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0899-819X</orcidid><orcidid>https://orcid.org/0000-0003-2239-2247</orcidid></search><sort><creationdate>20241101</creationdate><title>Integrable flows on null curves in the Anti-de Sitter 3-space</title><author>Musso, Emilio ; Pámpano, Álvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-c74e9bbc84aa441f52a3b43926358366bd014914d6cd59958132a49cb9ab0a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>33E05</topic><topic>33E10</topic><topic>37K10</topic><topic>53B30</topic><topic>Anti-de Sitter space</topic><topic>integrable flows</topic><topic>KdV equation</topic><topic>Lamé equation</topic><topic>null curves</topic><topic>special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musso, Emilio</creatorcontrib><creatorcontrib>Pámpano, Álvaro</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musso, Emilio</au><au>Pámpano, Álvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrable flows on null curves in the Anti-de Sitter 3-space</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>37</volume><issue>11</issue><spage>115015</spage><pages>115015-</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad7d58</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-0899-819X</orcidid><orcidid>https://orcid.org/0000-0003-2239-2247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2024-11, Vol.37 (11), p.115015
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ad7d58
source Institute of Physics Journals
subjects 33E05
33E10
37K10
53B30
Anti-de Sitter space
integrable flows
KdV equation
Lamé equation
null curves
special functions
title Integrable flows on null curves in the Anti-de Sitter 3-space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrable%20flows%20on%20null%20curves%20in%20the%20Anti-de%20Sitter%203-space&rft.jtitle=Nonlinearity&rft.au=Musso,%20Emilio&rft.date=2024-11-01&rft.volume=37&rft.issue=11&rft.spage=115015&rft.pages=115015-&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad7d58&rft_dat=%3Ciop_cross%3Enonad7d58%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true