Integrable flows on null curves in the Anti-de Sitter 3-space
We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stati...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2024-11, Vol.37 (11), p.115015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ad7d58 |