Integrable flows on null curves in the Anti-de Sitter 3-space

We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2024-11, Vol.37 (11), p.115015
Hauptverfasser: Musso, Emilio, Pámpano, Álvaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate integrable flows related to the Korteweg–De Vries (KdV) hierarchy on null curves in the anti-de Sitter 3-space ( AdS ). Exploiting the specific properties of the geometry of AdS , we analyze their interrelationships with Pinkall flows in centro-affine geometry. We show that closed stationary solutions of the lower order flow can be explicitly found in terms of periodic solutions of a Lamé equation. In addition, we study the evolution of non-stationary curves arising from a 3-parameter family of periodic solutions of the KdV equation.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ad7d58