Relative equilibria of mechanical systems with rotational symmetry
We consider the task of classifying relative equilibria for mechanical systems with rotational symmetry. We divide relative equilibria into two natural groups: a generic class which we call normal, and a non-generic abnormal class. The eigenvalues of the locked inertia tensor descend to shape-space...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2024-09, Vol.37 (9), p.95001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the task of classifying relative equilibria for mechanical systems with rotational symmetry. We divide relative equilibria into two natural groups: a generic class which we call normal, and a non-generic abnormal class. The eigenvalues of the locked inertia tensor descend to shape-space and endow it with the geometric structure of a three-web with the property that any normal relative equilibrium occurs as a critical point of the potential restricted to a leaf from the web. To demonstrate the utility of this web structure we show how the spherical three-body problem gives rise to a web of Cayley cubics on the three-sphere, and use this to fully classify the relative equilibria for the case of equal masses. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ad4dfd |