Long time asymptotics of large data in the Kadomtsev–Petviashvili models

We consider the Kadomtsev–Petviashvili (KP) equations posed on R 2 . For both models, we provide sequential in time asymptotic descriptions of solutions obtained from arbitrarily large initial data, inside regions of the plane not containing lumps or line solitons, and under minimal regularity assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2024-05, Vol.37 (5), p.55017
Hauptverfasser: Mendez, Argenis J, Muñoz, Claudio, Poblete, Felipe, Pozo, Juan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Kadomtsev–Petviashvili (KP) equations posed on R 2 . For both models, we provide sequential in time asymptotic descriptions of solutions obtained from arbitrarily large initial data, inside regions of the plane not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics. This new approach is particularly important in the KP-I case, where no monotonicity property was previously known. The core of our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ad359e