Wellposedness for a (1+1)-dimensional wave equation with quasilinear boundary condition

We consider the linear wave equation V ( x ) u t t ( x , t ) − u x x ( x , t ) = 0 on [ 0 , ∞ ) × [ 0 , ∞ ) with initial conditions and a nonlinear Neumann boundary condition u x ( 0 , t ) = ( f ( u t ( 0 , t ) ) ) t at x  = 0. This problem is an exact reduction of a nonlinear Maxwell problem in ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-12, Vol.36 (12), p.6712-6746
Hauptverfasser: Ohrem, Sebastian, Reichel, Wolfgang, Schnaubelt, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the linear wave equation V ( x ) u t t ( x , t ) − u x x ( x , t ) = 0 on [ 0 , ∞ ) × [ 0 , ∞ ) with initial conditions and a nonlinear Neumann boundary condition u x ( 0 , t ) = ( f ( u t ( 0 , t ) ) ) t at x  = 0. This problem is an exact reduction of a nonlinear Maxwell problem in electrodynamics. In the case where f : R → R is an increasing homeomorphism we study global existence, uniqueness and wellposedness of the initial value problem by the method of characteristics and fixed point methods. We also prove conservation of energy and momentum and discuss why there is no wellposedness in the case where f is a decreasing homeomorphism. Finally we show that previously known time-periodic, spatially localized solutions (breathers) of the wave equation with the nonlinear Neumann boundary condition at x  = 0 have enough regularity to solve the initial value problem with their own initial data.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ad03d0