Partial regularity for an exponential PDE in crystal surface models
We study regularity properties of weak solutions to the boundary value problem for the equation −Δ ρ + au = f in a bounded domain Ω ⊂ R N , where ρ = e − div | ∇ u | p − 2 ∇ u + β 0 | ∇ u | − 1 ∇ u . This problem is derived from the mathematical modelling of crystal surfaces. It is known that the ex...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2022-08, Vol.35 (8), p.4392-4425 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4425 |
---|---|
container_issue | 8 |
container_start_page | 4392 |
container_title | Nonlinearity |
container_volume | 35 |
creator | Xu, Xiangsheng |
description | We study regularity properties of weak solutions to the boundary value problem for the equation −Δ
ρ
+
au
=
f
in a bounded domain
Ω
⊂
R
N
, where
ρ
=
e
−
div
|
∇
u
|
p
−
2
∇
u
+
β
0
|
∇
u
|
−
1
∇
u
. This problem is derived from the mathematical modelling of crystal surfaces. It is known that the exponential term can be a measure-valued function. In this paper we obtain a partial regularity result, which asserts that there exists an open subset Ω
0
⊂ Ω such that |Ω\Ω
0
| = 0 and the exponential term is locally bounded in Ω
0
. Furthermore, if
x
0
∈ Ω\Ω
0
, then
ρ
vanishes of
N
+ 2 −
ɛ
order at
x
0
for each
ɛ
∈ (0, 2). |
doi_str_mv | 10.1088/1361-6544/ac7b62 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ac7b62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac7b62</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-c5b7494dbfd63197785e6c6e7e101d2a3369dae2490c2e6fa1ae97e9521d51133</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIhMKdoz-AUK8d2_ERhfKQKtEDnC3H2aBUaVLZiUT-npQgbpxWs7szmhlCboHdA8vzNQgFqZJZtnZel4qfkeRvdU4SZiSkWoO8JFcx7hkDyLlISLFzYWhcSwN-jq0LzTDRug_UdRS_jn2H3c9197ihTUd9mOIwwziG2nmkh77CNl6Ti9q1EW9-54p8PG3ei5d0-_b8WjxsU89zNqReljozWVXWlRJgtM4lKq9QIzCouBNCmcohzwzzHFXtwKHRaCSHSgIIsSJs0fWhjzFgbY-hObgwWWD2VII9JbanxHYpYabcLZSmP9p9P4ZuNvj_-zdI_F2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partial regularity for an exponential PDE in crystal surface models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xu, Xiangsheng</creator><creatorcontrib>Xu, Xiangsheng</creatorcontrib><description>We study regularity properties of weak solutions to the boundary value problem for the equation −Δ
ρ
+
au
=
f
in a bounded domain
Ω
⊂
R
N
, where
ρ
=
e
−
div
|
∇
u
|
p
−
2
∇
u
+
β
0
|
∇
u
|
−
1
∇
u
. This problem is derived from the mathematical modelling of crystal surfaces. It is known that the exponential term can be a measure-valued function. In this paper we obtain a partial regularity result, which asserts that there exists an open subset Ω
0
⊂ Ω such that |Ω\Ω
0
| = 0 and the exponential term is locally bounded in Ω
0
. Furthermore, if
x
0
∈ Ω\Ω
0
, then
ρ
vanishes of
N
+ 2 −
ɛ
order at
x
0
for each
ɛ
∈ (0, 2).</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac7b62</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crystal surface models ; exponential nonlinearity ; nonlinear fourth order equations ; partial regularity ; the one-Laplace operator</subject><ispartof>Nonlinearity, 2022-08, Vol.35 (8), p.4392-4425</ispartof><rights>2022 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-c5b7494dbfd63197785e6c6e7e101d2a3369dae2490c2e6fa1ae97e9521d51133</citedby><cites>FETCH-LOGICAL-c280t-c5b7494dbfd63197785e6c6e7e101d2a3369dae2490c2e6fa1ae97e9521d51133</cites><orcidid>0000-0003-4688-3817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac7b62/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Xu, Xiangsheng</creatorcontrib><title>Partial regularity for an exponential PDE in crystal surface models</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We study regularity properties of weak solutions to the boundary value problem for the equation −Δ
ρ
+
au
=
f
in a bounded domain
Ω
⊂
R
N
, where
ρ
=
e
−
div
|
∇
u
|
p
−
2
∇
u
+
β
0
|
∇
u
|
−
1
∇
u
. This problem is derived from the mathematical modelling of crystal surfaces. It is known that the exponential term can be a measure-valued function. In this paper we obtain a partial regularity result, which asserts that there exists an open subset Ω
0
⊂ Ω such that |Ω\Ω
0
| = 0 and the exponential term is locally bounded in Ω
0
. Furthermore, if
x
0
∈ Ω\Ω
0
, then
ρ
vanishes of
N
+ 2 −
ɛ
order at
x
0
for each
ɛ
∈ (0, 2).</description><subject>crystal surface models</subject><subject>exponential nonlinearity</subject><subject>nonlinear fourth order equations</subject><subject>partial regularity</subject><subject>the one-Laplace operator</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIhMKdoz-AUK8d2_ERhfKQKtEDnC3H2aBUaVLZiUT-npQgbpxWs7szmhlCboHdA8vzNQgFqZJZtnZel4qfkeRvdU4SZiSkWoO8JFcx7hkDyLlISLFzYWhcSwN-jq0LzTDRug_UdRS_jn2H3c9197ihTUd9mOIwwziG2nmkh77CNl6Ti9q1EW9-54p8PG3ei5d0-_b8WjxsU89zNqReljozWVXWlRJgtM4lKq9QIzCouBNCmcohzwzzHFXtwKHRaCSHSgIIsSJs0fWhjzFgbY-hObgwWWD2VII9JbanxHYpYabcLZSmP9p9P4ZuNvj_-zdI_F2E</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Xu, Xiangsheng</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4688-3817</orcidid></search><sort><creationdate>20220804</creationdate><title>Partial regularity for an exponential PDE in crystal surface models</title><author>Xu, Xiangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-c5b7494dbfd63197785e6c6e7e101d2a3369dae2490c2e6fa1ae97e9521d51133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>crystal surface models</topic><topic>exponential nonlinearity</topic><topic>nonlinear fourth order equations</topic><topic>partial regularity</topic><topic>the one-Laplace operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial regularity for an exponential PDE in crystal surface models</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-08-04</date><risdate>2022</risdate><volume>35</volume><issue>8</issue><spage>4392</spage><epage>4425</epage><pages>4392-4425</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We study regularity properties of weak solutions to the boundary value problem for the equation −Δ
ρ
+
au
=
f
in a bounded domain
Ω
⊂
R
N
, where
ρ
=
e
−
div
|
∇
u
|
p
−
2
∇
u
+
β
0
|
∇
u
|
−
1
∇
u
. This problem is derived from the mathematical modelling of crystal surfaces. It is known that the exponential term can be a measure-valued function. In this paper we obtain a partial regularity result, which asserts that there exists an open subset Ω
0
⊂ Ω such that |Ω\Ω
0
| = 0 and the exponential term is locally bounded in Ω
0
. Furthermore, if
x
0
∈ Ω\Ω
0
, then
ρ
vanishes of
N
+ 2 −
ɛ
order at
x
0
for each
ɛ
∈ (0, 2).</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac7b62</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-4688-3817</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2022-08, Vol.35 (8), p.4392-4425 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6544_ac7b62 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | crystal surface models exponential nonlinearity nonlinear fourth order equations partial regularity the one-Laplace operator |
title | Partial regularity for an exponential PDE in crystal surface models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20regularity%20for%20an%20exponential%20PDE%20in%20crystal%20surface%20models&rft.jtitle=Nonlinearity&rft.au=Xu,%20Xiangsheng&rft.date=2022-08-04&rft.volume=35&rft.issue=8&rft.spage=4392&rft.epage=4425&rft.pages=4392-4425&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac7b62&rft_dat=%3Ciop_cross%3Enonac7b62%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |