Partial regularity for an exponential PDE in crystal surface models
We study regularity properties of weak solutions to the boundary value problem for the equation −Δ ρ + au = f in a bounded domain Ω ⊂ R N , where ρ = e − div | ∇ u | p − 2 ∇ u + β 0 | ∇ u | − 1 ∇ u . This problem is derived from the mathematical modelling of crystal surfaces. It is known that the ex...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2022-08, Vol.35 (8), p.4392-4425 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study regularity properties of weak solutions to the boundary value problem for the equation −Δ
ρ
+
au
=
f
in a bounded domain
Ω
⊂
R
N
, where
ρ
=
e
−
div
|
∇
u
|
p
−
2
∇
u
+
β
0
|
∇
u
|
−
1
∇
u
. This problem is derived from the mathematical modelling of crystal surfaces. It is known that the exponential term can be a measure-valued function. In this paper we obtain a partial regularity result, which asserts that there exists an open subset Ω
0
⊂ Ω such that |Ω\Ω
0
| = 0 and the exponential term is locally bounded in Ω
0
. Furthermore, if
x
0
∈ Ω\Ω
0
, then
ρ
vanishes of
N
+ 2 −
ɛ
order at
x
0
for each
ɛ
∈ (0, 2). |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ac7b62 |