On a singular eigenvalue problem and its applications in computing the Morse index of solutions to semilinear PDE's: IIThis work was supported by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)
By using a characterization of the Morse index and the degeneracy in terms of a singular one dimensional eigenvalue problem given in Amadori A L and Gladiali F (2018 arXiv:1805.04321), we give a lower bound for the Morse index of radial solutions to Hénon type problems −Δu=|x|αf(u)inΩ,u=0on∂Ω, where...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2020-04, Vol.33 (6), p.2541-2561 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using a characterization of the Morse index and the degeneracy in terms of a singular one dimensional eigenvalue problem given in Amadori A L and Gladiali F (2018 arXiv:1805.04321), we give a lower bound for the Morse index of radial solutions to Hénon type problems −Δu=|x|αf(u)inΩ,u=0on∂Ω, where Ω is a bounded radially symmetric domain of RN (N ⩾ 2), α > 0 and f is a real function. From this estimate we get that the Morse index of nodal radial solutions to this problem goes to ∞ as α → ∞. Concerning the real Hénon problem, f(u) = |u|p−1u, we prove radial nondegeneracy, we show that the radial Morse index is equal to the number of nodal zones and we get that a least energy nodal solution is not radial. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ab7639 |