The Broucke-Hénon orbit and the Schubart orbit in the planar three-body problem with two equal masses
In this paper, we study the variational properties of two special orbits: a Schubart orbit and a Broucke-Hénon orbit. We show that under an appropriate topological constraint, a minimizer must be either a Schubart orbit or a Broucke-Hénon orbit. One of the main challenges is to prove that a Schubart...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2019-12, Vol.32 (12), p.4639-4664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the variational properties of two special orbits: a Schubart orbit and a Broucke-Hénon orbit. We show that under an appropriate topological constraint, a minimizer must be either a Schubart orbit or a Broucke-Hénon orbit. One of the main challenges is to prove that a Schubart orbit coincides with a minimizer connecting a collinear configuration with a binary collision and an isosceles configuration. A new geometric argument is introduced to overcome this challenge. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ab360d |