Existence of stationary fronts in a system of two coupled wave equations with spatial inhomogeneity

We investigate the existence of stationary fronts in a coupled system of two sine-Gordon equations with a smooth, 'hat-like' spatial inhomogeneity. The spatial inhomogeneity corresponds to a spatially dependent scaling of the sine-Gordon potential term. The uncoupled inhomogeneous sine-Gor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2019-11, Vol.32 (11), p.4147-4187
Hauptverfasser: Brooks, Jacob, Derks, Gianne, Lloyd, David J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the existence of stationary fronts in a coupled system of two sine-Gordon equations with a smooth, 'hat-like' spatial inhomogeneity. The spatial inhomogeneity corresponds to a spatially dependent scaling of the sine-Gordon potential term. The uncoupled inhomogeneous sine-Gordon equation has stable stationary front solutions that persist in the coupled system. Carrying out a numerical investigation it is found that these inhomogeneous sine-Gordon fronts loose stability, provided the coupling between the two inhomogeneous sine-Gordon equations is strong enough, with new stable fronts bifurcating. In order to analytically study the bifurcating fronts, we first approximate the smooth spatial inhomogeneity by a piecewise constant function. With this approximation, we prove analytically the existence of a pitchfork bifurcation. To complete the argument, we prove that transverse fronts for a piecewise constant inhomogeneity persist for the smooth 'hat-like' spatial inhomogeneity by introducing a fast-slow structure and using geometric singular perturbation theory.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ab2ca5