λ-stability of periodic billiard orbits

We introduce a new notion of stability for periodic orbits in polygonal billiards. We say that a periodic orbit of a polygonal billiard is λ-stable if there is a periodic orbit for the corresponding pinball billiard which converges to it as . This notion of stability is unrelated to the notion intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2018-09, Vol.31 (9), p.4326-4353
Hauptverfasser: Gaivão, José Pedro, Troubetzkoy, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new notion of stability for periodic orbits in polygonal billiards. We say that a periodic orbit of a polygonal billiard is λ-stable if there is a periodic orbit for the corresponding pinball billiard which converges to it as . This notion of stability is unrelated to the notion introduced by Galperin, Stepin and Vorobets. We give sufficient and necessary conditions for a periodic orbit to be λ-stable and prove that the set of d-gons having at most finite number of λ-stable periodic orbits is dense is the space of d-gons. Moreover, we also determine completely the λ-stable periodic orbits in integrable polygons.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/aacc47