Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction

In this work we first provide sufficient conditions to assure the persistence of some zeros of functions having the form g(z,ε)=g0(z)+∑i=1kεigi(z)+O(εk+1), for |ε|≠0 sufficiently small. Here gi:D→Rn, for i=0,1,...,k, are smooth functions being D⊂Rn an open bounded set. Then we use this result to com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2017-09, Vol.30 (9), p.3560-3586
Hauptverfasser: Cândido, Murilo R, Llibre, Jaume, Novaes, Douglas D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we first provide sufficient conditions to assure the persistence of some zeros of functions having the form g(z,ε)=g0(z)+∑i=1kεigi(z)+O(εk+1), for |ε|≠0 sufficiently small. Here gi:D→Rn, for i=0,1,...,k, are smooth functions being D⊂Rn an open bounded set. Then we use this result to compute the bifurcation functions which allow us to study the periodic solutions of the following T-periodic smooth differential system x′=F0(t,x)+∑i=1kεiFi(t,x)+O(εk+1),(t,z)∈S1×D. It is assumed that the unperturbed differential system has a sub-manifold of periodic solutions Z, dim⁡(Z)⩽n. We also study the case when the bifurcation functions have a continuum of zeros. Finally we provide the explicit expressions of the bifurcation functions up to order 5.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/aa7e95