Physically unclonable security patterns created by electrospinning, and authenticated by two-step validation method
Counterfeiting is a growing economic and social problem. For anticounterfeiting, random and inimitable droplet/fiber patterns were created by the electrospinning method as security tags that are detectable under UV light but invisible in daylight. To check the authenticity of the original security p...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2022-02, Vol.33 (9), p.95302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Counterfeiting is a growing economic and social problem. For anticounterfeiting, random and inimitable droplet/fiber patterns were created by the electrospinning method as security tags that are detectable under UV light but invisible in daylight. To check the authenticity of the original security patterns created; images were collected with a simple smartphone microscope and a database of the recorded original patterns was created. The originality of the random patterns was checked by comparing them with the patterns recorded in the database. In addition, the spectral signature of the patterns in the droplet/fiber network was obtained with a simple and hand-held spectrometer. Thus, by reading the spectral signature from the pattern, the spectral information of the photoluminescent nanoparticles was verified and thus a second-step verification was established. In this way, anticounterfeiting technology that combines ink formula, unclonable security pattern creation and two-level verification is developed. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ac3b0d |