A comparative study of two-step anodization with one-step anodization at constant voltage

Two-step anodization has been widely used because it can produce highly self-organized anodic TiO 2 nanotubes, but the differences in morphology and current-time curve of one-step anodization and two-step anodization are rarely reported. Here, one-step anodization and two-step anodization were condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2023-02, Vol.34 (6), p.65603
Hauptverfasser: Zeng, Huipeng, Li, Chengyuan, Dan, Yuxin, Lu, Yishan, Sun, Weidong, Zhang, Shaoyu, Song, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-step anodization has been widely used because it can produce highly self-organized anodic TiO 2 nanotubes, but the differences in morphology and current-time curve of one-step anodization and two-step anodization are rarely reported. Here, one-step anodization and two-step anodization were conducted at different voltages. By comparing the FESEM image of anodic TiO 2 nanotubes fabricated by one-step anodization and two-step anodization, it was found that the variation of morphology characteristics is same with voltage. The distinction of morphology and current-time curve between one-step anodization and two-step anodization at the same voltage were analyzed: the nanotube average growth rate and porosity of two-step anodization are greater than that of one-step anodization. In the current-time curve, the duration of stage I and stage II in two-step anodization are significantly shorter than one-step anodization. The traditional field-assisted dissolution theory cannot explain the three stages of the current-time curves and their physics meaning under different voltages in the same fluoride electrolyte. Here, the distinction between one-step anodization and two-step anodization was clarified successfully by the theories of ionic current and electronic current and oxygen bubble mould.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ac3788