A comparative study of two-step anodization with one-step anodization at constant voltage
Two-step anodization has been widely used because it can produce highly self-organized anodic TiO 2 nanotubes, but the differences in morphology and current-time curve of one-step anodization and two-step anodization are rarely reported. Here, one-step anodization and two-step anodization were condu...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2023-02, Vol.34 (6), p.65603 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-step anodization has been widely used because it can produce highly self-organized anodic TiO
2
nanotubes, but the differences in morphology and current-time curve of one-step anodization and two-step anodization are rarely reported. Here, one-step anodization and two-step anodization were conducted at different voltages. By comparing the FESEM image of anodic TiO
2
nanotubes fabricated by one-step anodization and two-step anodization, it was found that the variation of morphology characteristics is same with voltage. The distinction of morphology and current-time curve between one-step anodization and two-step anodization at the same voltage were analyzed: the nanotube average growth rate and porosity of two-step anodization are greater than that of one-step anodization. In the current-time curve, the duration of stage I and stage II in two-step anodization are significantly shorter than one-step anodization. The traditional field-assisted dissolution theory cannot explain the three stages of the current-time curves and their physics meaning under different voltages in the same fluoride electrolyte. Here, the distinction between one-step anodization and two-step anodization was clarified successfully by the theories of ionic current and electronic current and oxygen bubble mould. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ac3788 |