Atomic layer deposition of tungsten sulfide using a new metal-organic precursor and H2S: thin film catalyst for water splitting

Transition metal dichalcogenides (TMDs) are extensively researched in the past few years due to their two-dimensional layered structure similar to graphite. This group of materials offers tunable optoelectronic properties depending on the number of layers and therefore have a wide range of applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2021-02, Vol.32 (7), p.075405-075405
Hauptverfasser: Kim, Deok-Hyun, Ramesh, Rahul, Nandi, Dip K, Bae, Jong-Seong, Kim, Soo-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenides (TMDs) are extensively researched in the past few years due to their two-dimensional layered structure similar to graphite. This group of materials offers tunable optoelectronic properties depending on the number of layers and therefore have a wide range of applications. Tungsten disulfide (WS2) is one of such TMDs that has been studied relatively less compared to MoS2. Herein, WSx thin films are grown on several types of substrates by atomic layer deposition (ALD) using a new metal-organic precursor [tris(hexyne) tungsten monocarbonyl, W(CO)(CH3CH2C CCH2CH3)3] and H2S molecules at a relatively low temperature of 300 °C. The typical self-limiting film growth by varying both, precursor and reactant, is obtained with a relatively high growth per cycle value of ∼0.13 nm. Perfect growth linearity with negligible incubation period is also evident in this ALD process. While the as-grown films are amorphous with considerable S-deficiency, they can be crystallized as h-WS2 film by post-annealing in the H2S atmosphere above 700 °C as observed from x-ray diffractometry analysis. Several other analyses like Raman and x-ray photoelectron spectroscopy, transmission electron microscopy, UV-vis. spectroscopy are performed to find out the physical, optical, and microstructural properties of as-grown and annealed films. The post-annealing in H2S helps to promote the S content in the film significantly as confirmed by the Rutherford backscattering spectrometry. Extremely thin (∼4.5 nm), as-grown WSx films with excellent conformality (∼100% step coverage) are achieved on the dual trench substrate (minimum width: 15 nm, aspect ratio: 6.3). Finally, the thin films of WSx (as-grown and 600/700 °C annealed) on W/Si and carbon cloth substrate are investigated for electrochemical hydrogen evolution reaction (HER). The as-grown WSx shows poor performance towards HER and is attributed to the S-deficiency, amorphous character, and oxygen contamination of the WSx film. Annealing the WSx film at 700 °C results in the formation of a crystalline layered WS2 phase, which significantly improves the HER performance of the electrode. The study reveals the importance of sulfur content and crystallinity on the HER performance of W-based sulfides.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/abc50b