Surface-engineered cobalt nitride composite as efficient bifunctional oxygen electrocatalyst
Efficient and low-cost bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for the practical application of rechargeable metal-air batteries. In this work, we developed an efficient cobalt nitride hybrid bifunctional electrocatalyst, which con...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2019-12, Vol.30 (49), p.495406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient and low-cost bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for the practical application of rechargeable metal-air batteries. In this work, we developed an efficient cobalt nitride hybrid bifunctional electrocatalyst, which consists of sulfur-doped and mildly oxidized Co5.47N nanoparticles supported on nitrogen-doped reduced graphene oxide sheet (O-S-Co5.47N@N-RGO). The composite exhibits good ORR-OER catalytic activity and excellent stability as well. It delivers an ORR half-wave potential of 0.82 V and an over-potential of 380 mV for OER at 10 mA cm−2 in 0.1 M KOH electrolyte. Density functional theory calculations indicate that the ORR activity of the composite might have originated from the Co-N4 site in the RGO sheet, whereas the surface Co sites on O-S-Co5.47N crystal are responsible for its OER activity. The facile preparation method and insight into the ORR-OER active sites reported in this study advances the development of high-performance bifunctional oxygen electrocatalyst. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab4144 |