Enhancement of transport properties in single ZnSe nanowire field-effect transistors

Wide-gap semiconductors are excellent candidates for next-generation optoelectronic devices, including tunable emitters and detectors. ZnSe nanowire-based devices show great promise in blue emission applications, since they can be easily and reproducibly fabricated. However, their utility is limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2019-02, Vol.30 (5), p.054007-054007
Hauptverfasser: Wisniewski, David, Byrne, Kristopher, de Souza, Christina F, Fernandes, Carlos, Ruda, Harry E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wide-gap semiconductors are excellent candidates for next-generation optoelectronic devices, including tunable emitters and detectors. ZnSe nanowire-based devices show great promise in blue emission applications, since they can be easily and reproducibly fabricated. However, their utility is limited by deep level defect states that inhibit optoelectronic device performance. The primary objective of this work is to show how the performance of ZnSe nanowire devices improves when nanowires are subjected to a post-growth anneal treatment in a zinc-rich atmosphere. We use low temperature photoluminescence spectroscopy to determine the primary recombination mechanisms and associated defect states. We then characterize the electronic properties of ZnSe nanowire field effect transistors fabricated from both as-grown and Zn-annealed nanowires, and measure an order-of-magnitude improvement to the electrical conductivity and mobility after the annealing treatment. We show that annealing reduces the concentration of zinc vacancies, which are responsible for strong compensation and high amounts of scattering in the as-grown nanowires.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aaf0d9