Monolayer doping of germanium by phosphorus-containing molecules

The DPP (diethyl 1-propylphosphonate) and ODPA (octadecylphosphonic acid) molecules are studied as precursors for the monolayer doping (MLD) of germanium. Their adsorption behaviour is investigated, revealing different physicochemical interactions between the phosphorus-containing molecules and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2018-11, Vol.29 (46), p.465702-465702
Hauptverfasser: Sgarbossa, F, Carturan, S M, De Salvador, D, Rizzi, G A, Napolitani, E, Maggioni, G, Raniero, W, Napoli, D R, Granozzi, G, Carnera, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DPP (diethyl 1-propylphosphonate) and ODPA (octadecylphosphonic acid) molecules are studied as precursors for the monolayer doping (MLD) of germanium. Their adsorption behaviour is investigated, revealing different physicochemical interactions between the phosphorus-containing molecules and the Ge surfaces. It is discovered that DPP adsorption occurs after the oxidation of Ge surface, while the ODPA undergoes chemisorption on -H terminated surfaces. Quantitative phosphorus analysis demonstrates that in the first case more than one monolayer is formed (from 2 to 4), while in the second a single monolayer is formed. Moreover, the analysis of phosphorus diffusion from the surface layers into the Ge matrix reveals that conventional thermal annealing processes are not suitable for Ge injection due to a higher activation energy of the process in comparison with silicon. On the contrary, pulsed laser melting is effective in forming a doped layer, owing to the precursor's decomposition under UV light.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aade30