Micro-scale study of microcapsule cracking performance based on XFEM and fluid cavity model

Microcapsule self-healing has become popular for microcrack repairing in resin mineral composites, and the cracking performance of microcapsule directly affect their repair efficiency on the matrix material. In this study, the problem of how the volume of microcapsule core affects the cracking perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modelling and simulation in materials science and engineering 2024-07, Vol.32 (5), p.55018
Hauptverfasser: Wang, Ruotong, Fan, Yaqiong, Huang, Huiyang, Huang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microcapsule self-healing has become popular for microcrack repairing in resin mineral composites, and the cracking performance of microcapsule directly affect their repair efficiency on the matrix material. In this study, the problem of how the volume of microcapsule core affects the cracking performance of microcapsule is addressed. Based on the extended finite element method, the representative volume element (RVE) considering the volume of microcapsule core is established by combining the cohesive zone model and the fluid cavity model. On this basis, a numerical simulation study of the cracking performance of RVE with different volumes of microcapsule core under dynamic loading is conducted to investigate the triggered cracking process of the fully filled and incompletely filled microcapsules besides their cracking behavior, respectively. This study provides a reference for the preparation of microcapsules and the numerical simulation of microcapsule mechanical properties.
ISSN:0965-0393
1361-651X
DOI:10.1088/1361-651X/ad4d0c