Disordered magnetic ground state in a quasi-1-D d 4 columnar iridate Sr3LiIrO6

Abstract Spin–orbit coupling offers a large variety of novel and extraordinary magnetic and electronic properties in otherwise ‘ordinary pool’ of heavy ion oxides. Here we present a detailed study on an apparently isolated hexagonal 2 H spin-chain d 4 iridate Sr 3 LiIrO 6 with geometric frustration....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-10, Vol.36 (42)
Hauptverfasser: Bandyopadhyay, Abhisek, Das, Debu, Chakraborty, A, Bhowal, S, Kumar, Vinod, Stenning, G B G, Ritter, C, Adroja, D T, Moretti Sala, M, Efimenko, A, Meneghini, C, Bert, F, Biswas, P K, Dasgupta, I, Saha Dasgupta, T, Mahajan, A V, Ray, Sugata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Spin–orbit coupling offers a large variety of novel and extraordinary magnetic and electronic properties in otherwise ‘ordinary pool’ of heavy ion oxides. Here we present a detailed study on an apparently isolated hexagonal 2 H spin-chain d 4 iridate Sr 3 LiIrO 6 with geometric frustration. Our structural studies reveal Li–Ir chemical order with desired stoichiometry in this compound, while x-ray absorption together with x-ray photoemission spectroscopic characterizations establish pure 5+ valence of Ir. We have established a magnetic ground state with finite Ir 5+ magnetic moments in this compound, contrary to the anticipated nonmagnetic J eff = 0 state, through combined dc susceptibility, 7 Li nuclear magnetic resonance (NMR), muon spin relaxation ( µ SR) and ab-initio electronic structure studies. These investigations together with ac magnetic susceptibility and specific heat measurements reveal that despite having noticeable antiferromagnetic correlation among the Ir 5+ local moments, this system does not magnetically order down to at least 0.05 K, possibly due to geometrical exchange frustration, arising from the comparable nearest- and next-nearest-neighbor interchain Ir–O–O–Ir superexchange interaction strengths with opposite signs. However, the zero-field µ SR analysis shows emergence of a considerable proportion of spin-freezing on top of a spin-fluctuating dynamic magnetic background down to the lowest measured temperature of 1.7 K, possibly due to some inhomogeneity and/or the much stronger intra-column Ir–Ir magnetic exchange interaction strength relative to the inter-column Ir–Ir ones. The linear temperature dependence of the magnetic specific heat ( C m ) in both zero and applied magnetic fields, plus the power-law behavior of the NMR spin-lattice relaxation rate suggest a gapless spinon density of states in this charge gapped disordered magnetic ground state of Sr 3 LiIrO 6 .
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/ad63eb