The role of magnetic order in VOCl

VOCl and other transition metal oxychlorides are candidate materials for next-generation rechargeable batteries. We have investigated the influence of the underlying magnetic order on the crystallographic and electronic structure by means of density functional theory. Our study shows that antiferrom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-08, Vol.31 (32), p.325502-325502
Hauptverfasser: Ekholm, M, Schönleber, A, van Smaalen, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:VOCl and other transition metal oxychlorides are candidate materials for next-generation rechargeable batteries. We have investigated the influence of the underlying magnetic order on the crystallographic and electronic structure by means of density functional theory. Our study shows that antiferromagnetic ordering explains the observed low-temperature monoclinic distortion of the lattice, which leads to a decreased distance between antiferromagnetically coupled V-V nearest neighbors. We also show that the existence of a local magnetic moment removes the previously suggested degeneracy of the occupied levels, in agreement with experiments. To describe the electronic structure, it turns out crucial to take the correct magnetic ordering into account, especially at elevated temperature.
ISSN:0953-8984
1361-648X
1361-648X
DOI:10.1088/1361-648X/ab1eff