Ultra-wide range tri-mode flexible pressure sensor

Flexible pressure sensors, as an essential component of E-skin, have been applied in health monitoring and human-machine interface. However, the limited measurement range hinders their applications and developments. Herein, we present a tri-mode flexible porous pressure sensor with an ultra-wide mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2023-08, Vol.56 (34), p.345102
Hauptverfasser: Li, Na, Sun, Junlu, Chang, Shulong, Liao, Juan, Peng, Danni, Dong, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible pressure sensors, as an essential component of E-skin, have been applied in health monitoring and human-machine interface. However, the limited measurement range hinders their applications and developments. Herein, we present a tri-mode flexible porous pressure sensor with an ultra-wide measurement range (0.91 Pa–30 MPa) based on the triboelectric effect, piezoresistive effect, and mechanoluminescent (ML) effect. The low-pressure area (0.91–450 Pa) response was realized by a single-electrode triboelectric nanogenerator, which consists of polydimethylsiloxane (PDMS) and silver nanowire (Ag NWs). The medium-pressure area (0.45–1.8 kPa) was probed by the piezoresistive sensor using Ag NWs conductive network on the porous surface. ML phosphors (SrAl 2 O 4 :Eu 2+ , Dy 3+ , SAOED) blended in the PDMS matrix of porous pressure sensor were utilized to respond to the high pressure (1 Mpa–30 MPa). This flexible pressure sensor possesses excellent stability with over 20 000, 5000, and 2000 cycles in different pressure measurement ranges, respectively. Finally, a tactile glove with the tri-mode flexible porous pressure sensor was carried out and demonstrated various responses to different pressure conditions. This ultra-wide range tri-mode flexible sensor would provide a widely adaptable platform for human-machine interactions in the internet of things.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/acd4cd