Isotropic FMR frequency enhancement in thin Py/FeMn bilayers under strong magnetic proximity effect
Exchange biasing in ferromagnet/antiferromagnet bilayers is known to enhance the material’s ferromagnetic resonance frequency and make it strongly angle dependent due to the unidirectional anisotropy induced at the interface. We observe a ten-fold enhancement in frequency and angle-independent ferro...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2021-07, Vol.54 (30), p.305003 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exchange biasing in ferromagnet/antiferromagnet bilayers is known to enhance the material’s ferromagnetic resonance frequency and make it strongly angle dependent due to the unidirectional anisotropy induced at the interface. We observe a ten-fold enhancement in frequency and angle-independent ferromagnetic resonance in bilayers of Py/FeMn with ultrathin FeMn, accompanied by a significantly enhanced magnetic moment. The observed isotropic frequency enhancement is consistent with rotatable rather than unidirectional magnetic anisotropy and the induced magnetic moment links this anisotropy with the ferromagnet-proximity effect. The estimated effective anisotropy field acting on the proximity-induced moment in ultrathin FeMn can be as high as 0.5 T at room temperature. Our results show the potential of the ferromagnetic proximity effect combined with the inherent exchange anisotropy in antiferromagnets for high-speed spintronic applications. |
---|---|
ISSN: | 0022-3727 1361-6463 1361-6463 |
DOI: | 10.1088/1361-6463/abfe39 |