Enhancement of droplet ejection from molten and liquid plasma-facing surfaces by the electric field of the sheathSubstantial portions of this paper are adapted from section 4.1 of the first author's recent PhD thesis

Maintaining the stability of a liquid surface in contact with a plasma is of crucial importance in a range of industrial and fusion applications. The most fundamental feature of a plasma-surface interaction, the formation of a highly-charged sheath region, has been neglected from the majority of pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2019-12, Vol.53 (10)
Hauptverfasser: Holgate, J T, Coppins, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining the stability of a liquid surface in contact with a plasma is of crucial importance in a range of industrial and fusion applications. The most fundamental feature of a plasma-surface interaction, the formation of a highly-charged sheath region, has been neglected from the majority of previous studies of plasma-liquid interactions. This paper considers the effect of the electric field of the sheath on the ejection of micron-scale droplets from bubbles bursting at the liquid surface. A numerical simulation method, based on the ideal electrohydrodynamic model, is introduced and validated against the well-known Taylor cone theory. This model is then used to include the electrical effects of the sheath in simulations of bubble bursting events at a plasma-liquid interface. The results show a significant enhancement in droplet ejection at modest electric fields of between 10% and 20% of the critical field strength required for a solely electrohydrodynamic instability. This finding is in good qualitative agreement with experimental observations and its importance in a wide range of fusion and atmospheric-pressure plasma-liquid interactions is discussed. The inclusion of sheath physics in future studies of plasma-liquid interactions is strongly advocated.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/ab53fd