Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave

In this paper, a broadband and high-efficient tri-layered chiral structure metasurface (CSM) for linear polarization conversion and multi-functional wavefront manipulation was proposed and investigated numerically in terahertz region. The unit-cell of the proposed CSM consist of two orthogonal metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2020-01, Vol.53 (2), p.25109
Hauptverfasser: Fan, Junpeng, Cheng, Yongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a broadband and high-efficient tri-layered chiral structure metasurface (CSM) for linear polarization conversion and multi-functional wavefront manipulation was proposed and investigated numerically in terahertz region. The unit-cell of the proposed CSM consist of two orthogonal metal wires sandwiched with square split-ring resonator (SRR) structure, which can manipulate the polarization and wavefront of the transmitted wave simultaneously. Based on the Fabry-Perot-like cavity-enhanced effect of proposed CSM, broadband and high-efficiency cross-polarization conversion can be achieved. Numerical simulation results indicate that the cross-polarization transmission coefficient is higher than 0.9 from 0.4 THz to 1.0 THz, with a fractional bandwidth of 85.7%. The proposed CSM can achieve complete 2π phase coverage by adjusting the geometric parameters of the unit-cell structure. Anomalous refraction with a wide angle, two kinds of focusing metalenses and vortex beam generation are investigated to verify the multi-functional wavefront manipulation performance of the proposed CSM. Our work provides an effective method of enhancing the performance of transmission-type metasurface and the proposed devices show endless potential in wavefront control and communication applications in terahertz region.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/ab4d76