Mid-infrared Fano resonance in heavily doped silicon and metallic nanostructures due to coupling of Wood-Rayleigh anomaly and surface plasmons
This study reports the design and analysis of a plasmonic sensor based on a heavily doped silicon and metallic grating structure working in the mid-infrared region. The numerical results show that the reflection spectrum of the phosphorous-doped Si grating structure with a dopant concentration of 1 ...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2017-05, Vol.50 (20), p.205105 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study reports the design and analysis of a plasmonic sensor based on a heavily doped silicon and metallic grating structure working in the mid-infrared region. The numerical results show that the reflection spectrum of the phosphorous-doped Si grating structure with a dopant concentration of 1 × 2020 has a sharp asymmetric Fano resonance dip, which is strongly dependent on the refractive index change in the surroundings. It yields a sensitivity of 8000 nm/RIU (refractive index unit) and 950 nm/RIU working in the air and water media, respectively, very high values compared with that of existing devices. Moreover, the Fano resonance caused by coupling of the Wood-Rayleigh anomaly and surface plasmon resonances is demonstrated by calculating the magnetic field and Poynting vector patterns. Further, a feasible and easy fabrication process of the sensor featuring high performance is represented. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa69aa |