Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter
A gas-compensated thermal flow sensor is presented that measures the flow rate in real-time, independent of the type of gas, by simultaneously measuring and compensating for the thermal conductivity and volumetric heat capacity of the gas. The thermal flow sensor consists of two free-hanging, heated...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2025-01, Vol.35 (1), p.15003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15003 |
container_title | Journal of micromechanics and microengineering |
container_volume | 35 |
creator | Azadi Kenari, S Wiegerink, R J Sanders, R G P Lötters, J C |
description | A gas-compensated thermal flow sensor is presented that measures the flow rate in real-time, independent of the type of gas, by simultaneously measuring and compensating for the thermal conductivity and volumetric heat capacity of the gas. The thermal flow sensor consists of two free-hanging, heated wires, forming a calorimetric flow meter. The temperature difference between the two wires is a function of the flow rate and the fluid thermal properties. An additional heated wire is integrated on the same chip and used to measure the gas properties. This wire is suspended over a shallow V-groove cavity, and oriented perpendicular to the flow direction, so that it is only affected by the gas properties and not by the flow. DC excitation is used to measure the thermal conductivity, and AC excitation with the 3 ω method is used to determine the volumetric heat capacity. The output of the thermal flow sensor is automatically corrected for the medium using these measured parameters. Measurements were performed with 11 different gases and gas mixtures, and in all cases the deviation between the applied flow rate and measured flow rate is less than 10%. |
doi_str_mv | 10.1088/1361-6439/ad99e3 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6439_ad99e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmmad99e3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-5c8af6196f13c955846aa02fe74f95b58aa39a8712c3923b78e01a63d22c60ff3</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKfvPuYHWJfbrGnyKEOnMPBFn8tdejM72qYkmbJ_b2fFN58uHM53uHyM3YK4B6H1AqSCTC2lWWBtDMkzNvuLztlMGCUykFBesqsY90IAaNAzhmuMmfXdQH3ERDVPHxQ6bLlr_RePY-oDP8Sm33HsedMn2oWf3ie13jbpmDV9TSNdU5_4DiMfgh8opIYi7yhRuGYXDttIN793zt6fHt9Wz9nmdf2yethkFpRMWWE1OgVGOZDWFIVeKkSROyqXzhTbQiNKg7qE3EqTy22pSQAqWee5VcI5OWdi2rXBxxjIVUNoOgzHCkR1UlSdfFQnH9WkaETuJqTxQ7X3h9CPD_5f_wYoz2nN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Azadi Kenari, S ; Wiegerink, R J ; Sanders, R G P ; Lötters, J C</creator><creatorcontrib>Azadi Kenari, S ; Wiegerink, R J ; Sanders, R G P ; Lötters, J C</creatorcontrib><description>A gas-compensated thermal flow sensor is presented that measures the flow rate in real-time, independent of the type of gas, by simultaneously measuring and compensating for the thermal conductivity and volumetric heat capacity of the gas. The thermal flow sensor consists of two free-hanging, heated wires, forming a calorimetric flow meter. The temperature difference between the two wires is a function of the flow rate and the fluid thermal properties. An additional heated wire is integrated on the same chip and used to measure the gas properties. This wire is suspended over a shallow V-groove cavity, and oriented perpendicular to the flow direction, so that it is only affected by the gas properties and not by the flow. DC excitation is used to measure the thermal conductivity, and AC excitation with the 3 ω method is used to determine the volumetric heat capacity. The output of the thermal flow sensor is automatically corrected for the medium using these measured parameters. Measurements were performed with 11 different gases and gas mixtures, and in all cases the deviation between the applied flow rate and measured flow rate is less than 10%.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/1361-6439/ad99e3</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>method ; thermal conductivity ; thermal flow sensor ; volumetric heat capacity</subject><ispartof>Journal of micromechanics and microengineering, 2025-01, Vol.35 (1), p.15003</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-5c8af6196f13c955846aa02fe74f95b58aa39a8712c3923b78e01a63d22c60ff3</cites><orcidid>0000-0003-1670-8305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6439/ad99e3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Azadi Kenari, S</creatorcontrib><creatorcontrib>Wiegerink, R J</creatorcontrib><creatorcontrib>Sanders, R G P</creatorcontrib><creatorcontrib>Lötters, J C</creatorcontrib><title>Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>A gas-compensated thermal flow sensor is presented that measures the flow rate in real-time, independent of the type of gas, by simultaneously measuring and compensating for the thermal conductivity and volumetric heat capacity of the gas. The thermal flow sensor consists of two free-hanging, heated wires, forming a calorimetric flow meter. The temperature difference between the two wires is a function of the flow rate and the fluid thermal properties. An additional heated wire is integrated on the same chip and used to measure the gas properties. This wire is suspended over a shallow V-groove cavity, and oriented perpendicular to the flow direction, so that it is only affected by the gas properties and not by the flow. DC excitation is used to measure the thermal conductivity, and AC excitation with the 3 ω method is used to determine the volumetric heat capacity. The output of the thermal flow sensor is automatically corrected for the medium using these measured parameters. Measurements were performed with 11 different gases and gas mixtures, and in all cases the deviation between the applied flow rate and measured flow rate is less than 10%.</description><subject>method</subject><subject>thermal conductivity</subject><subject>thermal flow sensor</subject><subject>volumetric heat capacity</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kFFLwzAUhYMoOKfvPuYHWJfbrGnyKEOnMPBFn8tdejM72qYkmbJ_b2fFN58uHM53uHyM3YK4B6H1AqSCTC2lWWBtDMkzNvuLztlMGCUykFBesqsY90IAaNAzhmuMmfXdQH3ERDVPHxQ6bLlr_RePY-oDP8Sm33HsedMn2oWf3ie13jbpmDV9TSNdU5_4DiMfgh8opIYi7yhRuGYXDttIN793zt6fHt9Wz9nmdf2yethkFpRMWWE1OgVGOZDWFIVeKkSROyqXzhTbQiNKg7qE3EqTy22pSQAqWee5VcI5OWdi2rXBxxjIVUNoOgzHCkR1UlSdfFQnH9WkaETuJqTxQ7X3h9CPD_5f_wYoz2nN</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Azadi Kenari, S</creator><creator>Wiegerink, R J</creator><creator>Sanders, R G P</creator><creator>Lötters, J C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1670-8305</orcidid></search><sort><creationdate>20250131</creationdate><title>Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter</title><author>Azadi Kenari, S ; Wiegerink, R J ; Sanders, R G P ; Lötters, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-5c8af6196f13c955846aa02fe74f95b58aa39a8712c3923b78e01a63d22c60ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>method</topic><topic>thermal conductivity</topic><topic>thermal flow sensor</topic><topic>volumetric heat capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azadi Kenari, S</creatorcontrib><creatorcontrib>Wiegerink, R J</creatorcontrib><creatorcontrib>Sanders, R G P</creatorcontrib><creatorcontrib>Lötters, J C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azadi Kenari, S</au><au>Wiegerink, R J</au><au>Sanders, R G P</au><au>Lötters, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2025-01-31</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><spage>15003</spage><pages>15003-</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>A gas-compensated thermal flow sensor is presented that measures the flow rate in real-time, independent of the type of gas, by simultaneously measuring and compensating for the thermal conductivity and volumetric heat capacity of the gas. The thermal flow sensor consists of two free-hanging, heated wires, forming a calorimetric flow meter. The temperature difference between the two wires is a function of the flow rate and the fluid thermal properties. An additional heated wire is integrated on the same chip and used to measure the gas properties. This wire is suspended over a shallow V-groove cavity, and oriented perpendicular to the flow direction, so that it is only affected by the gas properties and not by the flow. DC excitation is used to measure the thermal conductivity, and AC excitation with the 3 ω method is used to determine the volumetric heat capacity. The output of the thermal flow sensor is automatically corrected for the medium using these measured parameters. Measurements were performed with 11 different gases and gas mixtures, and in all cases the deviation between the applied flow rate and measured flow rate is less than 10%.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6439/ad99e3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1670-8305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1317 |
ispartof | Journal of micromechanics and microengineering, 2025-01, Vol.35 (1), p.15003 |
issn | 0960-1317 1361-6439 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6439_ad99e3 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | method thermal conductivity thermal flow sensor volumetric heat capacity |
title | Gas-compensated thermal flow sensor using an integrated velocity-independent gas properties meter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-compensated%20thermal%20flow%20sensor%20using%20an%20integrated%20velocity-independent%20gas%20properties%20meter&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Azadi%20Kenari,%20S&rft.date=2025-01-31&rft.volume=35&rft.issue=1&rft.spage=15003&rft.pages=15003-&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/1361-6439/ad99e3&rft_dat=%3Ciop_cross%3Ejmmad99e3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |