Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor

The semiconductor metal oxide gas sensors are getting high attention owing to their high sensitivities and fast responses. They require high temperature for the reaction with target gases, and suspended silicon membrane microheaters are typically used to reduce the heating power consumption. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2023-08, Vol.33 (8), p.85011
Hauptverfasser: Lee, Byeongju, Cho, Incheol, Kang, Mingu, Yang, Daejong, Park, Inkyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85011
container_title Journal of micromechanics and microengineering
container_volume 33
creator Lee, Byeongju
Cho, Incheol
Kang, Mingu
Yang, Daejong
Park, Inkyu
description The semiconductor metal oxide gas sensors are getting high attention owing to their high sensitivities and fast responses. They require high temperature for the reaction with target gases, and suspended silicon membrane microheaters are typically used to reduce the heating power consumption. However, they have low durability for long-term uses, and high probability of fracture by thermal stress or mechanical impact. In this study, as an alternative to the silicon membrane microheater, anodic aluminum oxide (AAO)-based microheater platform gas sensor was fabricated for low power consumption and high thermal/mechanical stabilities. Nanoscale air gaps of the AAO substrate reduce the heat loss transferred to the substrate. Therefore, AAO-based microheater platforms do not require suspended structures sustained by very thin bridges, which dramatically enhances thermal/mechanical stabilities. The temperature of fabricated microheater platform reached to 250 °C by a heating power of 27.4 mW. The excellent thermal/mechanical stabilities of the AAO-based microheater platforms were verified by cyclic on-off and mechanical shock test. The pulsed heating operation was adopted, and it reduced the heating power consumption to 9 mW. The fabricated AAO-based gas sensors showed much higher responses to NO 2 gas compared to the SiO 2 membrane-based gas sensors.
doi_str_mv 10.1088/1361-6439/ace05e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6439_ace05e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmmace05e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ced67c84369ed069ea9ff07f2f96b8d18e24fbc1de46bd97e13257ae620d2d853</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKd3j7mpYF3SdG16HMNfMNhlnkOavLiMpilJu7n_3paJJ_Hyfbwv3-_j8UHolpInSjifUZbTJM9YOZMKyBzO0OTXOkcTUuYkoYwWl-gqxh0hlHLKJ2i_2UJwsq6PMwdqKxurxgUHX_Wxw7Lx2ios697ZpnfYf1kN-H6xWD9gZ1XwW5AdBNzWsjM-ODwIrv0Bt_4w2GoLzgeINnZ2D_hTRhyhiT5cowsj6wg3P3OKPl6eN8u3ZLV-fV8uVoliNO0SBTovFM9YXoImg8jSGFKY1JR5xTXlkGamUlRDlle6LICydF5IyFOiU83nbIrI6e7waowBjGiDdTIcBSVi5CZGSGKEJE7chsrjqWJ9K3a-D83w4H_xuz_iO-cEY4ILwucDatFqw74BA9p_2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Byeongju ; Cho, Incheol ; Kang, Mingu ; Yang, Daejong ; Park, Inkyu</creator><creatorcontrib>Lee, Byeongju ; Cho, Incheol ; Kang, Mingu ; Yang, Daejong ; Park, Inkyu</creatorcontrib><description>The semiconductor metal oxide gas sensors are getting high attention owing to their high sensitivities and fast responses. They require high temperature for the reaction with target gases, and suspended silicon membrane microheaters are typically used to reduce the heating power consumption. However, they have low durability for long-term uses, and high probability of fracture by thermal stress or mechanical impact. In this study, as an alternative to the silicon membrane microheater, anodic aluminum oxide (AAO)-based microheater platform gas sensor was fabricated for low power consumption and high thermal/mechanical stabilities. Nanoscale air gaps of the AAO substrate reduce the heat loss transferred to the substrate. Therefore, AAO-based microheater platforms do not require suspended structures sustained by very thin bridges, which dramatically enhances thermal/mechanical stabilities. The temperature of fabricated microheater platform reached to 250 °C by a heating power of 27.4 mW. The excellent thermal/mechanical stabilities of the AAO-based microheater platforms were verified by cyclic on-off and mechanical shock test. The pulsed heating operation was adopted, and it reduced the heating power consumption to 9 mW. The fabricated AAO-based gas sensors showed much higher responses to NO 2 gas compared to the SiO 2 membrane-based gas sensors.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/1361-6439/ace05e</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>AAO ; high-stability ; low-power sensor ; MEMS ; microheater platform ; nanoporous structure ; SMO gas sensor</subject><ispartof>Journal of micromechanics and microengineering, 2023-08, Vol.33 (8), p.85011</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ced67c84369ed069ea9ff07f2f96b8d18e24fbc1de46bd97e13257ae620d2d853</citedby><cites>FETCH-LOGICAL-c312t-ced67c84369ed069ea9ff07f2f96b8d18e24fbc1de46bd97e13257ae620d2d853</cites><orcidid>0000-0002-0837-7254 ; 0000-0001-5761-7739 ; 0000-0002-8774-5843 ; 0009-0003-6923-987X ; 0000-0002-9909-905X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6439/ace05e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Lee, Byeongju</creatorcontrib><creatorcontrib>Cho, Incheol</creatorcontrib><creatorcontrib>Kang, Mingu</creatorcontrib><creatorcontrib>Yang, Daejong</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><title>Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>The semiconductor metal oxide gas sensors are getting high attention owing to their high sensitivities and fast responses. They require high temperature for the reaction with target gases, and suspended silicon membrane microheaters are typically used to reduce the heating power consumption. However, they have low durability for long-term uses, and high probability of fracture by thermal stress or mechanical impact. In this study, as an alternative to the silicon membrane microheater, anodic aluminum oxide (AAO)-based microheater platform gas sensor was fabricated for low power consumption and high thermal/mechanical stabilities. Nanoscale air gaps of the AAO substrate reduce the heat loss transferred to the substrate. Therefore, AAO-based microheater platforms do not require suspended structures sustained by very thin bridges, which dramatically enhances thermal/mechanical stabilities. The temperature of fabricated microheater platform reached to 250 °C by a heating power of 27.4 mW. The excellent thermal/mechanical stabilities of the AAO-based microheater platforms were verified by cyclic on-off and mechanical shock test. The pulsed heating operation was adopted, and it reduced the heating power consumption to 9 mW. The fabricated AAO-based gas sensors showed much higher responses to NO 2 gas compared to the SiO 2 membrane-based gas sensors.</description><subject>AAO</subject><subject>high-stability</subject><subject>low-power sensor</subject><subject>MEMS</subject><subject>microheater platform</subject><subject>nanoporous structure</subject><subject>SMO gas sensor</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKd3j7mpYF3SdG16HMNfMNhlnkOavLiMpilJu7n_3paJJ_Hyfbwv3-_j8UHolpInSjifUZbTJM9YOZMKyBzO0OTXOkcTUuYkoYwWl-gqxh0hlHLKJ2i_2UJwsq6PMwdqKxurxgUHX_Wxw7Lx2ios697ZpnfYf1kN-H6xWD9gZ1XwW5AdBNzWsjM-ODwIrv0Bt_4w2GoLzgeINnZ2D_hTRhyhiT5cowsj6wg3P3OKPl6eN8u3ZLV-fV8uVoliNO0SBTovFM9YXoImg8jSGFKY1JR5xTXlkGamUlRDlle6LICydF5IyFOiU83nbIrI6e7waowBjGiDdTIcBSVi5CZGSGKEJE7chsrjqWJ9K3a-D83w4H_xuz_iO-cEY4ILwucDatFqw74BA9p_2Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lee, Byeongju</creator><creator>Cho, Incheol</creator><creator>Kang, Mingu</creator><creator>Yang, Daejong</creator><creator>Park, Inkyu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0837-7254</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-8774-5843</orcidid><orcidid>https://orcid.org/0009-0003-6923-987X</orcidid><orcidid>https://orcid.org/0000-0002-9909-905X</orcidid></search><sort><creationdate>20230801</creationdate><title>Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor</title><author>Lee, Byeongju ; Cho, Incheol ; Kang, Mingu ; Yang, Daejong ; Park, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ced67c84369ed069ea9ff07f2f96b8d18e24fbc1de46bd97e13257ae620d2d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AAO</topic><topic>high-stability</topic><topic>low-power sensor</topic><topic>MEMS</topic><topic>microheater platform</topic><topic>nanoporous structure</topic><topic>SMO gas sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Byeongju</creatorcontrib><creatorcontrib>Cho, Incheol</creatorcontrib><creatorcontrib>Kang, Mingu</creatorcontrib><creatorcontrib>Yang, Daejong</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Byeongju</au><au>Cho, Incheol</au><au>Kang, Mingu</au><au>Yang, Daejong</au><au>Park, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>85011</spage><pages>85011-</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>The semiconductor metal oxide gas sensors are getting high attention owing to their high sensitivities and fast responses. They require high temperature for the reaction with target gases, and suspended silicon membrane microheaters are typically used to reduce the heating power consumption. However, they have low durability for long-term uses, and high probability of fracture by thermal stress or mechanical impact. In this study, as an alternative to the silicon membrane microheater, anodic aluminum oxide (AAO)-based microheater platform gas sensor was fabricated for low power consumption and high thermal/mechanical stabilities. Nanoscale air gaps of the AAO substrate reduce the heat loss transferred to the substrate. Therefore, AAO-based microheater platforms do not require suspended structures sustained by very thin bridges, which dramatically enhances thermal/mechanical stabilities. The temperature of fabricated microheater platform reached to 250 °C by a heating power of 27.4 mW. The excellent thermal/mechanical stabilities of the AAO-based microheater platforms were verified by cyclic on-off and mechanical shock test. The pulsed heating operation was adopted, and it reduced the heating power consumption to 9 mW. The fabricated AAO-based gas sensors showed much higher responses to NO 2 gas compared to the SiO 2 membrane-based gas sensors.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6439/ace05e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0837-7254</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-8774-5843</orcidid><orcidid>https://orcid.org/0009-0003-6923-987X</orcidid><orcidid>https://orcid.org/0000-0002-9909-905X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2023-08, Vol.33 (8), p.85011
issn 0960-1317
1361-6439
language eng
recordid cdi_iop_journals_10_1088_1361_6439_ace05e
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects AAO
high-stability
low-power sensor
MEMS
microheater platform
nanoporous structure
SMO gas sensor
title Thermally/mechanically robust anodic aluminum oxide (AAO) microheater platform for low power chemoresistive gas sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally/mechanically%20robust%20anodic%20aluminum%20oxide%20(AAO)%20microheater%20platform%20for%20low%20power%20chemoresistive%20gas%20sensor&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Lee,%20Byeongju&rft.date=2023-08-01&rft.volume=33&rft.issue=8&rft.spage=85011&rft.pages=85011-&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/1361-6439/ace05e&rft_dat=%3Ciop_cross%3Ejmmace05e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true