Biocompatible bonding of a rigid off-stoichiometry thiol-ene-epoxy polymer microfluidic cartridge to a biofunctionalized silicon biosensor

Attachment of biorecognition molecules prior to microfluidic packaging is advantageous for many silicon biosensor-based lab-on-a-chip (LOC) devices. This necessitates biocompatible bonding of the microfluidic cartridge, which, due to thermal or chemical incompatibility, excludes standard microfabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2022-07, Vol.32 (7), p.75008
Hauptverfasser: Sønstevold, Linda, Yadav, Mukesh, Arnfinnsdottir, Nina Bjørk, Herbjørnrød, Aina Kristin, Jensen, Geir Uri, Aksnes, Astrid, Mielnik, Michal Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Attachment of biorecognition molecules prior to microfluidic packaging is advantageous for many silicon biosensor-based lab-on-a-chip (LOC) devices. This necessitates biocompatible bonding of the microfluidic cartridge, which, due to thermal or chemical incompatibility, excludes standard microfabrication bonding techniques. Here, we demonstrate a novel processing approach for a commercially available, two-step curable polymer to obtain biocompatible ultraviolet initiated (UVA)-bonding of polymer microfluidics to silicon biosensors. Biocompatibility is assessed by UVA-bonding to antibody-functionalized ring resonator sensors and performing antigen capture assays while optically monitoring the sensor response. The assessments indicate normal biological function of the antibodies after UVA-bonding with selective binding to the target antigen. The bonding strength between polymer and silicon chips (non-biofunctionalized and biofunctionalized) is determined in terms of static liquid pressure. Polymer microfluidic cartridges are stored for more than 18 weeks between cartridge molding and cartridge-to-silicon bonding. All bonded devices withstand more than 2500 mbar pressure, far exceeding the typical requirements for LOC applications, while they may also be de-bonded after use. We suggest that these characteristics arise from bonding mainly through intermolecular forces, with a large extent of hydrogen bonds. Dimensional fidelity assessed by microscopy imaging shows less than 2% shrinkage through the molding process and the water contact angle is approximately 80°. As there is generally little absorption of UVA light (365 nm) in proteins and nucleic acids, this UVA-bonding procedure should be applicable for packaging a wide variety of biosensors into LOC systems.
ISSN:0960-1317
1361-6439
DOI:10.1088/1361-6439/ac6ebf