Klein-Gordon equation in curved space-time

We report the methods and results of a computational physics project on the solution of the relativistic Klein-Gordon equation for a light particle gravitationally bound to a heavy central mass. The gravitational interaction is prescribed by the metric of a spherically symmetric space-time. Metrics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2018-07, Vol.39 (4), p.45405
Hauptverfasser: Lehn, R D, Chabysheva, S S, Hiller, J R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the methods and results of a computational physics project on the solution of the relativistic Klein-Gordon equation for a light particle gravitationally bound to a heavy central mass. The gravitational interaction is prescribed by the metric of a spherically symmetric space-time. Metrics are considered for an impenetrable sphere, a soft sphere of uniform density, and a soft sphere with a linear transition from constant to zero density; in each case the radius of the central mass is chosen to be sufficient to avoid any event horizon. The solutions are obtained numerically and compared with nonrelativistic Coulomb-type solutions, both directly and in perturbation theory, to study the general-relativistic corrections to the quantum solutions for a 1/r potential. The density profile with a linear transition is chosen to avoid singularities in the wave equation that can be caused by a discontinuous derivative of the density. This project should be of interest to instructors and students of computational physics at the graduate and advanced undergraduate levels.
ISSN:0143-0807
1361-6404
DOI:10.1088/1361-6404/aabdde