Black hole topology in f(R) gravity

Hawking's topology theorem in general relativity restricts the cross-section of the event horizon of a black hole in 3  +  1 dimension to be either spherical or toroidal. The toroidal case is ruled out by the topology censorship theorems. In this article, we discuss the generalization of this r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2018-06, Vol.35 (14)
Hauptverfasser: Mishra, Akash K, Rahman, Mostafizur, Sarkar, Sudipta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hawking's topology theorem in general relativity restricts the cross-section of the event horizon of a black hole in 3  +  1 dimension to be either spherical or toroidal. The toroidal case is ruled out by the topology censorship theorems. In this article, we discuss the generalization of this result to black holes in gravity in 3  +  1 and higher dimensions. We obtain a sufficient differential condition on the function , which restricts the topology of the horizon cross-section of a black hole in gravity in 3  +  1 dimension to be either S2 or . We also extend the result to higher dimensional black holes and show that the same sufficient condition also restricts the sign of the Yamabe invariant of the horizon cross-section.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/aacc20