Thermal modelling of Advanced LIGO test masses

High-reflectivity fused silica mirrors are at the epicentre of today's advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2017-06, Vol.34 (11), p.115001
Hauptverfasser: Wang, H, Blair, C, Dovale Álvarez, M, Brooks, A, Kasprzack, M F, Ramette, J, Meyers, P M, Kaufer, S, O'Reilly, B, Mow-Lowry, C M, Freise, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-reflectivity fused silica mirrors are at the epicentre of today's advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors' performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5-2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/aa6e60