Contravariant gravity on Poisson manifolds and Einstein gravity

A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys. 63 683-704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2017-06, Vol.34 (11), p.115002
Hauptverfasser: Kaneko, Yukio, Muraki, Hisayoshi, Watamura, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys. 63 683-704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein-Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/aa6e5b