Tauberian class estimates for vector-valued distributions

We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form , where the kernel is a test function and . We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2019-02, Vol.210 (2), p.272-296
Hauptverfasser: Pilipović, S., Vindas, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form , where the kernel is a test function and . We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes values in a narrower Banach space. Our goal is to characterize spaces of Banach-space-valued tempered distributions in terms of so-called class estimates for the transform . Our results generalize and improve earlier Tauberian theorems due to Drozhzhinov and Zav'yalov. Special attention is paid to finding the optimal class of kernels for which these Tauberian results hold. Bibliography: 24 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM9061