Tauberian class estimates for vector-valued distributions
We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form , where the kernel is a test function and . We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes va...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2019-02, Vol.210 (2), p.272-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form , where the kernel is a test function and . We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes values in a narrower Banach space. Our goal is to characterize spaces of Banach-space-valued tempered distributions in terms of so-called class estimates for the transform . Our results generalize and improve earlier Tauberian theorems due to Drozhzhinov and Zav'yalov. Special attention is paid to finding the optimal class of kernels for which these Tauberian results hold. Bibliography: 24 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM9061 |