On orthogonal projections of Nöbeling spaces
Suppose that . We prove that there is a dense open subset of the Grassmann space such that the orthogonal projection of the standard Nöbeling space (which lies in for sufficiently large ) to every -dimensional plane in this subset is -soft and possesses the strong -universal property with respect to...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Mathematics 2020-08, Vol.84 (4), p.627-658 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that . We prove that there is a dense open subset of the Grassmann space such that the orthogonal projection of the standard Nöbeling space (which lies in for sufficiently large ) to every -dimensional plane in this subset is -soft and possesses the strong -universal property with respect to Polish spaces. Every such orthogonal projection is a natural counterpart of the standard Nöbeling space for the category of maps. |
---|---|
ISSN: | 1064-5632 1468-4810 |
DOI: | 10.1070/IM8910 |