On orthogonal projections of Nöbeling spaces

Suppose that . We prove that there is a dense open subset of the Grassmann space such that the orthogonal projection of the standard Nöbeling space (which lies in for sufficiently large ) to every -dimensional plane in this subset is -soft and possesses the strong -universal property with respect to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2020-08, Vol.84 (4), p.627-658
1. Verfasser: Ageev, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that . We prove that there is a dense open subset of the Grassmann space such that the orthogonal projection of the standard Nöbeling space (which lies in for sufficiently large ) to every -dimensional plane in this subset is -soft and possesses the strong -universal property with respect to Polish spaces. Every such orthogonal projection is a natural counterpart of the standard Nöbeling space for the category of maps.
ISSN:1064-5632
1468-4810
DOI:10.1070/IM8910