Improved Particle Swarm Optimization for Selection of Shield Tunneling Parameter Values
This article proposes an exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values. According to the iteration changes and the range of inertia weight in particle swarm opt...
Gespeichert in:
Veröffentlicht in: | Computer modeling in engineering & sciences 2019-01, Vol.118 (2), p.317-337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article proposes an exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values. According to the iteration changes and the range of inertia weight in particle
swarm optimization algorithm (PSO), the inertia weight is adjusted by the form of exponential function. Meanwhile, the self-regulation mechanism of the immune system is combined with the PSO. 12 benchmark functions and the realistic cases of shield tunneling parameter value selection are utilized
to demonstrate the feasibility and accuracy of the proposed EAIW-IPSO algorithm. Comparison with other improved PSO indicates that EAIW-IPSO has better performance to solve unimodal and multimodal optimization problems. When solving the selection of shield tunneling parameter values, EAIW-IPSO
can provide more accurate and reliable references for the realistic engineering. |
---|---|
ISSN: | 1526-1492 1526-1506 1526-1506 |
DOI: | 10.31614/cmes.2019.04693 |