Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems
The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply nonlinear content-aware signal processing, which rend...
Gespeichert in:
Veröffentlicht in: | Electronic Imaging 2020-01, Vol.32 (9), p.345-1-345-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply nonlinear content-aware signal processing,
which renders their noise scene-dependent. For scene-dependent systems, measuring the NPS with respect to uniform patch signals fails to characterize with accuracy: i) system noise concerning a given input scene, ii) the average system noise power in real-world applications. The sceneand-
process-dependent NPS (SPD-NPS) framework addresses these limitations by measuring temporally varying system noise with respect to any given input signal. In this paper, we examine the scene-dependency of simulated camera pipelines in-depth by deriving SPD-NPSs from fifty test scenes. The
pipelines apply either linear or non-linear denoising and sharpening, tuned to optimize output image quality at various opacity levels and exposures. Further, we present the integrated area under the mean of SPD-NPS curves over a representative scene set as an objective system noise metric,
and their relative standard deviation area (RSDA) as a metric for system noise scene-dependency. We close by discussing how these metrics can also be computed using scene-and-processdependent Modulation Transfer Functions (SPD-MTF). |
---|---|
ISSN: | 2470-1173 2470-1173 |
DOI: | 10.2352/ISSN.2470-1173.2020.9.IQSP-345 |