Physiological barriers to the oral delivery of curcumin
Curcumin, a principal component from Curcuma longa, with antioxidant and anti-inflammatory activities was proposed as a potential candidate for the preventation and/or treatment of cancer and chronic diseases. However, curcumin could not achieve its expected therapeutic outcome in clinical trials du...
Gespeichert in:
Veröffentlicht in: | Pharmazie 2012-06, Vol.67 (6), p.518-524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Curcumin, a principal component from Curcuma longa, with antioxidant and anti-inflammatory activities was proposed as a potential candidate for the preventation and/or treatment of cancer and chronic diseases. However, curcumin could not achieve its expected therapeutic outcome
in clinical trials due to its low solubility and poor bioavailability. The actual intestinal physiological barriers limiting curcumin absorption after oral administration have not been fully investigated. To identify the main barriers curtailing its absorption, in vitro permeability
of curcumin and flux of its glucuronide were monitored in rat jejunum and Transwell grown Caco-2 cells. Curcumin was more permeable under acidic conditions, but the permeability was substantially below the permeability of highly permeable standards. Its efflux could not be inhibited by specific
Pgp and MRP inhibitors. BCRP was found to participate in curcumin transport, but the Organic Anion Transporting Polypeptide (OATP) did not. The permeability of curcumin significantly increased when the structure of mucus was compromised. The inhibitor of curcumin metabolism, piperin, failed
to act as a permeability enhancer. Piperin inhibited Pgp and MRP transporters and decreased the amount of glucuronide transported back into the intestine. Inclusion of piperin in curcumin-containing formulations is highly recommended as to inhibit curcumin glucuronidation and to increase the
transport of formed glucuronides into the plasma, therefore increasing the probability of glucuronide distribution into target tissue and inter-convertion to curcumin. It would also be beneficial, if curcumin delivery systems could reversibly compromise the mucous integrity to minimize the
non-specific binding of curcumin to its constituents. |
---|---|
ISSN: | 0031-7144 |
DOI: | 10.1691/ph.2012.1112 |