Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function

We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2019-11, Vol.67 (6), p.1659-1677
Hauptverfasser: Tavaslıoğlu, Onur, Prokopyev, Oleg A., Schaefer, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic mixed-integer programming and multifollower bilevel mixed-integer programming. For both of these problem classes, the generalized value function approach allows the solution of instances that are significantly larger than those solved in the literature in terms of the total number of variables and number of scenarios.
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.2019.1842