Carbon nanotubes/carbon black synergistic reinforced natural rubber composites

Carbon black (CB) and carbon nanotubes (CNTs) filled natural rubber (NR) composites were prepared. In order to overcome the dispersion of CNTs in rubber matrix, the surface modification of CNTs with bis-(γ-triethoxysilylpropyl)-tetrasulphide (Si-69) was undertaken, and a two-step mixing process, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plastics, rubber & composites rubber & composites, 2009-10, Vol.38 (7), p.290-296
Hauptverfasser: Yan, N., Wu, J. K., Zhan, Y. H., Xia, H. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon black (CB) and carbon nanotubes (CNTs) filled natural rubber (NR) composites were prepared. In order to overcome the dispersion of CNTs in rubber matrix, the surface modification of CNTs with bis-(γ-triethoxysilylpropyl)-tetrasulphide (Si-69) was undertaken, and a two-step mixing process, i.e. the use of twin roll mill followed by mixing in a Haake Banbury mixer (TR-THM) was used. The structure and mechanical properties were investigated. The results show that the Si-69 treated CNTs (S-CNTs) were dispersed in the rubber matrix uniformly. Compared with CB/NR composites without CNTs, the S-CNTs/CB/NR composites have better mechanical properties. When the ratio of S-CNTs/CB/NR was 5 : 20 : 100, the tear strength was improved by ∼60%, and the mechanical properties reached a maximum. Dynamical mechanical analysis (DMA) reveals that with increasing content of CNT, the elastic modulus of composites at room temperature increases, and the maximum loss tangent and the corresponding glass transition temperature of composites decrease.
ISSN:1465-8011
1743-2898
DOI:10.1179/146580109X12473409436580