Large noise asymptotics of invariant measures, with applications to lyapunov exponents

We prove a basically necessary and sufficient criterion under which is stabilizable by parametric white noise which is only permitted to be applied to a prescribed set of entries of A. Mathematically, this leads to a non-classical averaging problem in which the large noise is degenerate (not hypo-el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastics and stochastics reports 1996-10, Vol.59 (1-2), p.71-142
Hauptverfasser: Arnold, Ludwig, Eizenberg, Alex, Wihstutzc, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a basically necessary and sufficient criterion under which is stabilizable by parametric white noise which is only permitted to be applied to a prescribed set of entries of A. Mathematically, this leads to a non-classical averaging problem in which the large noise is degenerate (not hypo-elliptic), and the averaged system has many invariant measures. Delicate estimates are necessary to prove "non-uniqueness breaking" of the sequence of invariant measures
ISSN:1045-1129
1029-0346
DOI:10.1080/17442509608834085