Characterizing innovations realizations for random processes

In this paper we are concerned with the theory of second order (linear) innovations for discrete random processes. We show that of existence of a finite dimensional linear filter realizing the mapping from a discrete random process to innovations is equivalent to a certain semiseparable structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastics 1984-01, Vol.11 (3-4), p.159-172
Hauptverfasser: Schwartzt, Carla A., Dickinsont, Bradley W., Sontagt, Eduardo D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we are concerned with the theory of second order (linear) innovations for discrete random processes. We show that of existence of a finite dimensional linear filter realizing the mapping from a discrete random process to innovations is equivalent to a certain semiseparable structure of the covariance sequence of the process. We also show that existence of a finite dimensional realization (linear or nonlinear) of the mapping from a process to its innovations implies that the process have this semiseparable covariance sequence property. In particular, for a stationary random process, the spectral density function must be rational.
ISSN:0090-9491
2472-7067
DOI:10.1080/17442508308833283